搭建开发环境

使用anaconda 进行环境搭建

下载安装anaconda

如果遇到:

ERROR: The install method you used for conda--probably either `pip install conda` or `easy_install conda`--is not compatible with using conda as an application.
If your intention is to install conda as a standalone application, currently
supported install methods include the Anaconda installer and the miniconda
installer.  You can download the miniconda installer from
https://conda.io/miniconda.html.

那么可以将conda的可执行文件所在目录放到$PATH中,即在~/.zshrc(也可以是~/.bashrc)中加入如下语句

export PATH="/anaconda2/bin:$PATH"

这个目录根据你的安装情况来定。

然后 source ~/.zshrc 即可。

因为conda的官方源速度很慢, 所以一定要先配置清华源:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

安装anaconda后scipy/numpy/pandas等都已经安装好了,可以使用如下脚本进行校验:

# scipy
import scipy
print('scipy: %s' % scipy.__version__)
# numpy
import numpy
print('numpy: %s' % numpy.__version__)
# matplotlib
import matplotlib
print('matplotlib: %s' % matplotlib.__version__)
# pandas
import pandas
print('pandas: %s' % pandas.__version__)
# statsmodels
import statsmodels
print('statsmodels: %s' % statsmodels.__version__)
# scikit-learn
import sklearn
print('sklearn: %s' % sklearn.__version__)

输出如下:

scipy: 1.1.0
numpy: 1.14.3
matplotlib: 2.2.2
pandas: 0.23.0
statsmodels: 0.9.0
sklearn: 0.19.1

然后再安装深度学习的包

conda install theano
conda install tensorflow
conda install keras

使用如下脚本检测:

# theano
import theano
print('theano: %s' % theano.__version__)
# tensorflow
import tensorflow
print('tensorflow: %s' % tensorflow.__version__)
# keras
import keras
print('keras: %s' % keras.__version__)

输出如下:

theano: 0.9.0.dev-c697eeab84e5b8a74908da654b66ec9eca4f1291
tensorflow: 1.1.0
Using TensorFlow backend.
keras: 2.2.0

参考:

https://machinelearningmastery.com/setup-python-environment-machine-learning-deep-learning-anaconda/

宁雨 /
Published under (CC) BY-NC-SA in categories MachineLearning  tagged with
comments powered by Disqus